ON THE COMPUTATION OF THE INCOMPLETE GAMMA FUNCTIONS
FOR LARGE VALUES OF THE PARAMETERS
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A method for computing incomplete gamma functions is given
for the case when the parameters are both positive and large.
The method is based on earlier results of the author on uniform
asymptotic expansions of these functions. It is concluded that
the method may be considered as an addition to Gautschi's
algorithm, which becomes inefficient in the case that the
method described here is best applicable.

1. INTRODUCTION

For the computation of special functions of mathematical
physics or mathematical statistics, polynomial or rational
min-max approximations are frequently used. These methods are
especially efficient when a single real argument has to be
considered. 1In multivariate problems, or when complex
variables are involved, analytical expansions and representations
are preferred. Key words are: recurrence relations, continued
fraction, series expansions. See, for instance, [2]1, [4]
and [ 5] for details on this topic.

In this paper we consider the use of an asymptotic
representation for incomplete gamma functions, functions of
two variables which are assumed to be non-negative. Essential
in our approach is the fact that we do not use the asymptotic
expansion of the functions involved. Instead we use a series
expansion, the coefficients of which are generated by a simple
recursion. In this way it is possible to construct an
algorithm for the incomplete gamma function for the difficult
case, i.e. when both parameters are large. Comparing our
method with existing algorithms we observe a remarkable
reduction in computational effort.
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2. DEFINITIONS AND NOTATIONS

We use the incomplete gamma functions in the normalized

form
X ©
1 a-1 -t _ 1 a-1l -t
P(a,x) = T (a) Jt e dt, Q(a,x) = T &) Jt e dt
o] X
(2.1)
with x 2 O and a > O. By this definition,
P(a,x) + Q(a,x) = L. (2,2)

So, in the computational problem we compute the one of (2.1)
that is less than %, and (2.2) gives the other one. With
slight corrections for small values of x and a we have the
following rule:

]

1-9;

O £ a g x: first compute Q, then P
0 1-p.

< x < a: first compute P, then Q

This follows from the asymptotic relation

P(a,a), Q(ala) ~ !2:' y aeo,

A rather complete discussion of the computational problem
for P and Q is given in [3]. The method for Q is based on
Legendre's continued fraction (x not too small) and the method
for P on the Taylor series

© n
a -x X

P(a,x) = x e I Te+n+l " (2.3)
n=0

Gautschi reports, for 8-digit accuracy with x = 10240 and

a = x.(140.001), the need in the power series of 536 terms,

and for a = x.(1-0.00l1) of 124 iterations for the continued
fraction (with the remark that the continued fraction is 2 - 2%
times as expensive, per iteration, as the Taylor series).
Comparing this with our approach is not fair, since our method
is especially suitable for large values of a and x, with a ~ x.
Our claim is that the method presented here is a useful addition
to Gautschi's procedure for a large area of the a,x- gquarter
plane around the diagonal a = x. More information on the
computational effort of our method will be given in section 4.
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3. UNIFORM ASYMPTOTIC EXPANSIONS

In [6] we obtained the following representation for P and

Q
P(a,x) = % erfc(-n va/2) - Ra(n),
Q(a,x) = %—erfc(n va/2) + Ra(n); (3.1)

erfc is the error function defined by

© 2
erfe(z) = 2/ /F'fe—t at. (3.2)
z

The real parameter n in (3.1) is defined by
>N = A -1 -ln A, X = x/a, sign (n) = sign(A-1).

2 (3.3)

For the function Ra(n) we derived an asymptotic expansion.
Writing

1.2

e Zan
R_(n) = —s_(n), (3.4)

a a
2ma
we have

o cn(n)

Sa(n) ~ I , a > &, (3.5)
n=0 a

n € R. No restrictions on n are needed: it may be fixed as
large as we please and it may grow with a as fast as we please.
In fact, (3.5) holds uniformly with respect to n € R (and in a
larger domain of the complex plane). The first coefficients
in (3.5) are

|-

Co(n)

7

-1
1 n

>
1

o - __r (3.6)

n ()\—l)3 ()x-l)2 12 (A-1)

wh#

cl(n)

These two, and all higher coefficients, have a removable
singularity at n = O(A = 1, x = a). Consequently, the
numerical evaluation is difficult for small values of |n[.
Recall our remark that the area a ~ x (both large) gives
problems in the existing software and that our approach will
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concentrate on this domain.

To evaluate the coefficients Ck(n) of (3.5) near n = O we

can expand each coefficient in a Taylor series

T k)
ck(n) = I c]n

n=0

", k=0, 1,.... (3.7)

The series converges for [n] < 2 /1. Recurrence relations for

(k)

Cn are given in [6 ] . However, with the expansions (3.7) we

still need the summation of the asymptotic expansion (3.5).
Although we derived error bounds for the remainders of this
expansion we describe now a method in which Sa(n) of (3.4) is

expanded in a Taylor series instead of in an asymptotic series
as in (3.5). The new approach seems to be more attractive for
numerical calculations than that based on (3.5).

4. EVALUATION OF Sa(ﬂ)

Differentiating one of (3.1l) with respect to n gives

s Ss m =S ) - o £ 41 (4.D)

with
tm =35 = (4.2)
I*(a) = Ya/271 e2a “T(a). (4.3)

The functions f£(n) and Sa(n) are analytic in a large domain of
the complex n - plane. Singularities nearest to the origin are

n, = 2/F.exp (+3mi/4). So we can expand

1 ® m
Sa(n) = To(a) z bm(a)n '
m=0

(4.4)

(=]
£(n) =1+ I £
m
m=1

both expansions converge for ]n[<2/?. Substituting the
expansions in (4.1) and comparing equal powexrs of n we obtain
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b

1 al I'*(a)-1

(a)

(m+l)bm+l(a)

Moreover we have

a[bm_l(a) - fﬁl, m

483

1,

(4.5)
>

-

1.

P*(a)sa(o) = V2naF*(a)[%~— P(a,a) ] . (4.6)

Recursion (4.5) can be viewed as a first order inhomogeneous
recursion relation for {b2m(a)}, {b2m+l(a)} of which the first

values bo, b, are defined.

1

However,

the recursion in the

forward direction is unstable, especially when a is large.
More details to verify this will be given in the following

section. For computing {bm}

large (aO 10 is a suitable

backward direction, with two

sz(a), b2N+l(a)' where N is

next section it follows that

(a)

b2N+j

for a > ao, where aO need not be

choice), we can use (4.5) in

approximate starting values

sufficiently large. From the
a convenient start is

, J =0,1. 4.7
fonegerr 3 = 002 (4.7)

The starting value N depends on a and the required accuracy.
By using the backward recursion on (4.5) we can avoid the
somewhat difficult computation of bo(a), bl(a). When we have

computed b
of (4.5).

l(a), we also have I'*(a) appearing in the first line

30

1 1 1 1 1 I
0 10 20 30 40 50 60
Fig. 4.1 The shaded area in the (x,a)-plane corresponds with

a>1lo, nel-1,11.
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To give an idea about the computational effort we consider
the case a = 10 and n € [-1,1]. We can use (4.7) with N = 7,
and we can replace in the first line of (4.4) « by 14 to
obtain Sa(n) within (relative) accuracy of 0.5 x 10 8, nel-1,1.
l""f16' In fact the same
accuracy of 8 decimal digits is possible for all a € [l0,=),
with the same value of N, and n € [-1,1]. For the computation
of P and Q we need also the computation of the error function
in (3.1). So, comparison with Gautschi's method cannot be
done straightforwardly, but it will be clear now that the
difficult part in (3.1), i.e., Ra(n), can be evaluated with

So we need the pretabulation of f

much less computational effort than is required in Gautschi's
approach for the difficult area near a = x(and both large).

Corresponding A-values of n = + 1 are (see (3.3))

n=-1:2x=0.3017...; n=+1: A = 2.357....
(4.8)

It follows that n € [-1,1] corresponds with x/a € [0,3017...,
2.357....] . Hence, the shaded area of the (x,a)-quarter plane
of Figure 4.1 is covered when a2l0 and n € [-1,1]. We repeat
our earlier remark that for x,a in this area a pretabulation

of fl""'fl6 of (4.4) is needed and that backward recursion

of (4.5) with (4.7) as starting values (N = 7) gives Sa(n) of

(4.4) within 8 significant decimal digits.

From a numerical point of view more efficient approaches
are possible by replacing (4.4) by Chebyshev expansions with
rational functions of n as argument of the polynomials. Much
larger n-intexrvals can be covered then. However, the analogue
of (4.5) will become more complicated.

The first few coefficients fm of (4.4) are

fl = -1/3, f2 =1/12, f3 = -2/135, f4 = 1/864, f5 = 1/2835.
Further coefficients can be generated by the recursion
k-1
k+l; (k-1)
= - £ + e
= T 3k kel jE3fj—lfk+l—-j/(k+2 31 ke

(4.9)

To show this we first consider the coefficients {ak} in
A=1+ an + a,n + .... Substituting this expansion into

(A=1)dX/dn = An (which follows from (4.2)), we obtain
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_ _ 1
o0 = 1, a, = 3 0y = 1/36, o, = -1/270, o, = 1/4320,

5

and for k 2 2 the recursion

k-1
kt+l)a, = - |
( ) k= %1 ‘Z jajak—j+l' (4.10)
j=2
Next we observe that from (4.2) it follows that
£(n) = d(Iad)/dn = a0k - 1 - 2n%) /an = a/an-n,
(4.11)
which gives
1
f = 2 - = - — =
1 a2 1 3 ¢ fk (k+l)ak+l (k22) .

Using this in (4.10) we obtain (4.9).
5. ON THE STABILITY OF THE RECURSION FOR {bm(a)}

To discuss the stability aspects of (4.5) we first remark
that the general solution is composed of a particular solution
(due to the inhomogeneous term fm) and a solution of the

homogeneous equation. The latter is due to the homogeneous
part of (4.1), and it is the set of Taylor coefficients of

2
exp(%—an ). This exponentially large function cannot be

incorporated in the solution needed here. For instance, (3.5)
shows that Sa(n) = 0(l), a»>», n € R. For the same reason the

required solution of (4.5) is free of the homogeneous component
(a/2)m/m!, although this is very small when m + « (a fixed).
The Taylor series in (4.4) have equal radius of
convergence. So we expect that bm(a) is of the same order as
fm (when m is large) and that large values of a do not disturb
this. The following analysis confirms the relation between
£f and b _(a).
m m
First we claim that bo(a) and bl(a) have the following

asymptotic expansions
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o]

m
bo(a) z 2 m!f2m+la
m=0

-=m

(5.1)
o I'(m+3/2)

b.(a) ~ £ 278 ——— f a ™
1 =0 T(3/2) 2m+2

as a > «, where fm are the coefficients of f in (4.4).

To prove this we need more details on how (3.1) follows
from (2.1). Writing t = aT in the first of (2.1) we obtain

— A
1 a -—a(T-1-1nT)dT
P(a,x) 5;—fe ( nt)dt
(o]

T T (@) T

where I'*(a) is given in (4.3) and A = x/a. A further

transformation %—Cz = T-1-1n T (with sign () = sign (7-1))
gives
n - L aC2
1 a 2
Plax) = wgy —27_0{8 £(p)az, (5.2)

where n is given in (3.3) and f in (4.2). So, bo(a) of (4.6)
can be written as

0 1 2

2t

b (a) = V2tal'*(a) - a f e f(g)dac.

0

0o

By using (5.2) with x = @(n==), we can write this as

1.2
17 T3
by(@) =3a J[£(0)-£(-0) le azg. (5.3)
(¢]

For bl(a) of (4.5) we first consider

1 2
Ja - 3¢
M@ =7V o= Jle@ + £(-0) le ac. (5.4)
(0]

By expanding f as in (4.4) and substituting this in (5.3),
(5.4) we obtain (5.1). By applying (4.5) we infer
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n [
m -m
b2n(a) ~ s mEnZ m.f2m+la
. (5.5)
n o
a m -m
b (a) ~ —————— L 2 I'(m+3/2)f a
2
k n+l 2% (n+3) /2) m=n 2mt2
as a*», where n = 0,1,... This shows that
-1
bn(a) = fn+l[]_ + 0(a )], a»e, (5.6)

which shows once again that the solution of the homogeneous
part of the recursion (4.5) cannot be present in bn(a).

Furthermore it makes clear why (4.7) is used for initiating
the backward recursion.

The above conclusions can be based on a more rigorous
analysis by introducing remainders in the expansions in (5.1).
That is, we write

n-1

_ m_, -m n_,_—n_(o) i

bo(a) = 12 mif, 4@ +2nlar (a), i
m=0 i

i

n-1 .m n %

_ Ty 2rmesse) o, 2°T(o3/2) -n (1) i
pi@ = I gy fme® YT TR/ 2 a0 0
m=0 Jz

where n = 0,1,..., a > O. By using this representation it
follows from (4.5) that

(a) = D)

2n+l T "n (a,

b, (a) = r(o) (a), b
2n n

which is the exact interpretation of (5.5). So, the
coefficients bn(a) in (4.4) are in fact the remainders of
asymptotic representations of bo and bl' With (4.5) the
remainders are generated.

Knowing the nature of the solution of the recursion (4.5)

we can now use a more explicit method to show that forward
recursion is not stable. Gautschi [1] used the guantity

foh
b = fn,n=0,l,... (5.7)
n

to study the stability of the recursion
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=af +c
L R n’
see also [4]. 1In (5.7) h is the solution of the homogeneous
equation hn+l = anhn, i.e.,
n-1
h =c¢c IIa,,
n j=0 3j
where ¢ is some constant. In our case the recursion for {bzm}
gives
b
_ a" ] '
Dn = b -
2"n! T2n

From (5.5) and the convergence of the series in (4.4) it
follows that for a first approximation we can replace b2n by

(2V;5_2n. So we obtain

o =of 212"

> o,
n n Ivn

So, given a (say a = 10), the first pn values are increasing

very fast. There is a turning point at n = 2mea(=170 when a=10).
This shows that backward recurrence is stable unless a is small
or we need a lot of coefficients bm(a).
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